March 14, 2024

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < @

• *ATE* =

•
$$ATE = Avg_n[Y_i^1 - Y_i^0]$$

◆□ > ◆□ > ◆ □ > ● □ >

•
$$ATE = Avg_n[Y_i^1 - Y_i^0]$$

• $ATE_{est} =$

•
$$ATE = Avg_n[Y_i^1 - Y_i^0]$$

• $ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i^0]$

$$AIE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$$

◆□ > ◆□ > ◆ □ > ● □ >

•
$$ATE = Avg_n[Y_i^1 - Y_i^0]$$

•
$$ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$$

うびん 同 (小川)・山下 (四)・(日)・

• When
$$(Y^1, Y^0) \not\perp D$$
:

0

$$ATE = Avg_n[Y_i^1 - Y_i^0]$$

$$ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$$
When $(Y^1, Y^0) \not\perp D$:
$$ATE_{est} = ATE + \underbrace{\{Avg_n[Y_i^0|D_i = 1] - Avg_n[Y_i^0|D_i = 0]\}}_{\text{Selection Bias}}$$

$$+ \underbrace{(1 - \pi)(ATT - ATU)}_{\text{Heterogeneous Treatment Effect Bias}}$$

・ロト ・西ト ・ヨト ・ヨー うへの

•
$$ATE = Avg_n[Y_i^1 - Y_i^0]$$

• $ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$
• When $(Y^1, Y^0) \not\perp D$:
 $ATE_{est} = ATE + \underbrace{\{Avg_n[Y_i^0|D_i = 1] - Avg_n[Y_i^0|D_i = 0]\}}_{\text{Selection Bias}}$
 $+ \underbrace{(1 - \pi)(ATT - ATU)}_{\text{Heterogeneous Treatment Effect Bias}}$

• Solution?

• Randomize treatment exposure so that $(Y^1, Y^0) \perp D$.

• Randomize treatment exposure so that $(Y^1, Y^0) \perp D$.

$$ATE_{est} = ATE + \underbrace{\{Avg_n[Y_i^0|D_i = 1] - Avg_n[Y_i^0|D_i = 0]\}}_{\text{Selection Bias} = 0} + \underbrace{(1 - \pi)(ATT - ATU)}_{\text{Heterogeneous Treatment Effect Bias} = 0}$$

• Randomize treatment exposure so that $(Y^1, Y^0) \perp D$.

$$ATE_{est} = ATE + \underbrace{\{Avg_n[Y_i^0|D_i = 1] - Avg_n[Y_i^0|D_i = 0]\}}_{\text{Selection Bias} = 0} + \underbrace{(1 - \pi)(ATT - ATU)}_{\text{Heterogeneous Treatment Effect Bias} = 0}$$

◆□> ◆□> ◆三> ◆三> ・三 ・ 少へぐ

Added bonus when LLNs applies:

• Randomize treatment exposure so that $(Y^1, Y^0) \perp D$.

$$ATE_{est} = ATE + \underbrace{\{Avg_n[Y_i^0|D_i = 1] - Avg_n[Y_i^0|D_i = 0]\}}_{\text{Selection Bias} = 0} + \underbrace{(1 - \pi)(ATT - ATU)}_{\text{Heterogeneous Treatment Effect Bias} = 0}$$

Added bonus when LLNs applies: Sample ATE = Population ATE

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

• Randomize treatment exposure so that $(Y^1, Y^0) \perp D$.

$$ATE_{est} = ATE + \underbrace{\{Avg_n[Y_i^0|D_i = 1] - Avg_n[Y_i^0|D_i = 0]\}}_{\text{Selection Bias} = 0} + \underbrace{(1 - \pi)(ATT - ATU)}_{\text{Heterogeneous Treatment Effect Bias} = 0}$$

• Added bonus when LLNs applies: Sample ATE = Population ATE

 $\{Avg_n[Y_i^1|D_i=1] - Avg_n[Y_i^0|D_i=0]\} = \{E[Y_i^1|D_i=1] - E[Y_i^0|D_i=0]\}$

• So randomization is the ideal and the "gold standard" of research methodologies.

- So randomization is the ideal and the "gold standard" of research methodologies.
- But...in policy analysis it's often (though not always) impossible to randomize individuals in our sample into treatment?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

- So randomization is the ideal and the "gold standard" of research methodologies.
- But...in policy analysis it's often (though not always) impossible to randomize individuals in our sample into treatment?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

• How can we attempt to identify causal effects of policy when randomization is infeasible?

Regression Analysis

Regression Analysis

Assume that when key observed variables have been "made equal" across treatment and control groups, omitted variable bias from unobserved confounders will also be eliminated.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

Regression Analysis

Assume that when key observed variables have been "made equal" across treatment and control groups, omitted variable bias from unobserved confounders will also be eliminated.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

• Even if D is not randomly assigned, we can still *hope* that $(Y^1, Y^0) \perp D$.

Regression Analysis

Assume that when key observed variables have been "made equal" across treatment and control groups, omitted variable bias from unobserved confounders will also be eliminated.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

- Even if D is not randomly assigned, we can still hope that (Y¹, Y⁰) ⊥⊥ D.
- And that $ATE_{est} = ATE$.

• Regression Analysis

Assume that when key observed variables have been "made equal" across treatment and control groups, omitted variable bias from unobserved confounders will also be eliminated.

- Even if D is not randomly assigned, we can still *hope* that $(Y^1, Y^0) \perp D$.
- And that $ATE_{est} = ATE$.
- BUT THIS NOT "GUARANTEED" LIKE IT IS WITH RANDOMIZATION AND DEPENDS ON A STRONG (UNTESTABLE) ASSUMPTION.

• So how does regression actually work?

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● のへで

• So how does regression actually work?

• Note that we have not randomized people into X in this case. We simply observe an individual's value of X in our sample.

 How does OLS use the regression residuals to fit a trend line to a series of data points?

• Suppose that we estimate a linear regression model of the following form: $y_{it} = \beta_0 + \beta_1 E du_{it} + \varepsilon_{it}$

Where y is the number of times that individual i visits the emergency department in year t

Edu is individual *i*'s education in years (e.g. a value of 12 represents a high school education, a value of 14 represents a college education, etc.).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

Our coefficient estimates are as follows: $\hat{\beta}_0=4.0$ and $\hat{\beta}_1=-0.25$.

How do we interpret these coefficient estimates?

• But suppose the *population* distribution is...

<ロ> (日) (同) (日) (日) (日) (日)

• $\hat{\beta}_1$ is an estimate of the true β_1 , the relationship between X (the independent variable) and Y (the dependent variable)

• $\hat{\beta}_1$ is an estimate of the true β_1 , the relationship between X (the independent variable) and Y (the dependent variable)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

• How reliable is our estimate?

- $\hat{\beta}_1$ is an estimate of the true β_1 , the relationship between X (the independent variable) and Y (the dependent variable)
- How reliable is our estimate?
 - Variance of the sampling distribution of the sample mean
 - Variance of the distribution of β 's from independent samples of the population

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

- Equal to the variance of the population distribution divided by n (number of samples)
- Square root of this variance is the standard error

- $\hat{\beta}_1$ is an estimate of the true β_1 , the relationship between X (the independent variable) and Y (the dependent variable)
- How reliable is our estimate?
 - Variance of the sampling distribution of the sample mean
 - Variance of the distribution of β 's from independent samples of the population

- Equal to the variance of the population distribution divided by n (number of samples)
- Square root of this variance is the standard error
- Inference
 - Calculate a t-statistic and corresponding *p*-value
 - $C.I._{\hat{\beta}} = \hat{\beta} \pm t^* \times SE(\hat{\beta})$

- $\hat{\beta}_1$ is an estimate of the true β_1 , the relationship between X (the independent variable) and Y (the dependent variable)
- How reliable is our estimate?
 - Variance of the sampling distribution of the sample mean
 - Variance of the distribution of β 's from independent samples of the population
 - Equal to the variance of the population distribution divided by n (number of samples)
 - Square root of this variance is the standard error
- Inference
 - Calculate a t-statistic and corresponding *p*-value
 - $C.I._{\hat{\beta}} = \hat{\beta} \pm t^* \times SE(\hat{\beta})$
 - Suppose you estimate the regression model above and find that the coefficient estimate of β_1 has a p-value of 0.115 from a two-sided t-test. What does that mean and what would you conclude about the statistical significance of the relationship between education and emergency department use?

• Note that at this point, regression doesn't look all that different from randomization.

- Note that at this point, regression doesn't look all that different from randomization.
 - In both cases we're just comparing means of treated and control groups from a sample.

イロト イポト イヨト イヨト ヨー わらで

- Note that at this point, regression doesn't look all that different from randomization.
 - In both cases we're just comparing means of treated and control groups from a sample.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

• Where these methods begin to diverge is when we add additional covariates to our regression model to "control" for potental confounders.
• Medicaid Expansion and Mortality

Percentage of U.S. Adults Without Health Insurance, 2008-2018

% Uninsured

GALLUP NATIONAL HEALTH AND WELL-BEING INDEX

◆□> ◆□> ◆三> ◆三> ● ● ● ●

SOURCE: Bureau of Labor Statistics via FRED

BUSINESS INSIDER

◆□ → ◆□ → ◆三 → ◆三 → ○ ● ● の ● ●

・ロト・日本・山下・山下・ 日・ シック・

<ロ> <=> <=> <=> <=> <=> <=> のへで

◆□> ◆□> ◆三> ◆三> 三三 のへで

◆□> ◆□> ◆三> ◆三> 三三 のへで

$$y_{it} = \beta_0 + \beta_1 D_{it} + \varepsilon_{it}$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ♡ < ♡

$$y_{it} = \beta_0 + \beta_1 D_{it} + \varepsilon_{it}$$
$$y_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 E du_{it} + \varepsilon_{it}$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ♡ < ♡

$$y_{it} = \beta_0 + \beta_1 D_{it} + \varepsilon_{it}$$
$$y_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 E du_{it} + \varepsilon_{it}$$
$$y_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 E du_{it} + \beta_3 Age_{it} + \varepsilon_{it}$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ♡ < ♡

$$y_{it} = \beta_0 + \beta_1 D_{it} + \varepsilon_{it}$$
$$y_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 E du_{it} + \varepsilon_{it}$$
$$y_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 E du_{it} + \beta_3 A g e_{it} + \varepsilon_{it}$$
$$y_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 E du_{it} + \beta_3 A g e_{it} + ... \beta_k X_{it} + \varepsilon_{it}$$

$$y_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 E du_{it} + \beta_3 A g e_{it} + \dots \beta_k X_{it} + \varepsilon_{it}$$

• Our goal is to "control" for as many characteristics (X) as we can that could be related to insurance coverage and morality (i.e., confounders).

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● のへで

$$y_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 E du_{it} + \beta_3 A g e_{it} + \dots \beta_k X_{it} + \varepsilon_{it}$$

- Our goal is to "control" for as many characteristics (X) as we can that could be related to insurance coverage and morality (i.e., confounders).
- Estimate the effect of Medicaid coverage on mortality *conditional* on education, age, etc.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● のへで

$$y_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 E du_{it} + \beta_3 A g e_{it} + \dots \beta_k X_{it} + \varepsilon_{it}$$

- Our goal is to "control" for as many characteristics (X) as we can that could be related to insurance coverage and morality (i.e., confounders).
- Estimate the effect of Medicaid coverage on mortality *conditional* on education, age, etc.

• Remember, as long as we have eliminated all relevant confounders, our regression estimate will be equal to the average treatment effect:

 $ATE_{est} = ATE$

イロト イポト イヨト イヨト ヨー わらで

• Remember, as long as we have eliminated all relevant confounders, our regression estimate will be equal to the average treatment effect:

 $ATE_{est} = ATE$

But then there's this...

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

• What happens if we fail to account for an observed or unobserved confounder?

- What happens if we fail to account for an observed or unobserved confounder?
- Our estimate of the effect of Medicaid coverage on mortality will be *biased*.

- What happens if we fail to account for an observed or unobserved confounder?
- Our estimate of the effect of Medicaid coverage on mortality will be *biased*.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

• We think we're estimating the effect of Medicaid coverage on mortality, but we're actually estimating the combined effect of Medicaid coverage and risk aversion on mortality.

- What happens if we fail to account for an observed or unobserved confounder?
- Our estimate of the effect of Medicaid coverage on mortality will be *biased*.
- We think we're estimating the effect of Medicaid coverage on mortality, but we're actually estimating the combined effect of Medicaid coverage and risk aversion on mortality.
- Sometimes we can determine which direction that bias is likely to take.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

- What happens if we fail to account for an observed or unobserved confounder?
- Our estimate of the effect of Medicaid coverage on mortality will be *biased*.
- We think we're estimating the effect of Medicaid coverage on mortality, but we're actually estimating the combined effect of Medicaid coverage and risk aversion on mortality.
- Sometimes we can determine which direction that bias is likely to take.
 - Suppose that those who are more risk averse are more likely to sign up for Medicaid coverage when eligible and are more likely to be in better health.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

- What happens if we fail to account for an observed or unobserved confounder?
- Our estimate of the effect of Medicaid coverage on mortality will be *biased*.
- We think we're estimating the effect of Medicaid coverage on mortality, but we're actually estimating the combined effect of Medicaid coverage and risk aversion on mortality.
- Sometimes we can determine which direction that bias is likely to take.
 - Suppose that those who are more risk averse are more likely to sign up for Medicaid coverage when eligible and are more likely to be in better health.
 - Then our estimate of the effect of Medicaid coverage on mortality will be biased *away from zero*.

• Moral of the story:

- Moral of the story:
 - Regression analysis is often used in place of randomization when randomization is infeasible.

- Moral of the story:
 - Regression analysis is often used in place of randomization when randomization is infeasible.
 - The goal is to compare statistically identical people who differ only in their exposure to treatment.

イロト イポト イヨト イヨト ヨー わらで

- Moral of the story:
 - Regression analysis is often used in place of randomization when randomization is infeasible.
 - The goal is to compare statistically identical people who differ only in their exposure to treatment.
 - Under certain conditions, regression can return causal estimates of our relationship of interest.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()
Policy Evaluation - Regression

- Moral of the story:
 - Regression analysis is often used in place of randomization when randomization is infeasible.
 - The goal is to compare statistically identical people who differ only in their exposure to treatment.
 - Under certain conditions, regression can return causal estimates of our relationship of interest.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

But omitted variable bias is a serious threat when exposure to treatment is non-random. Policy Evaluation - Regression

- Moral of the story:
 - Regression analysis is often used in place of randomization when randomization is infeasible.
 - The goal is to compare statistically identical people who differ only in their exposure to treatment.
 - Under certain conditions, regression can return causal estimates of our relationship of interest.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

- But omitted variable bias is a serious threat when exposure to treatment is non-random.
- So what do we do if randomization is infeasible and we're not confident that regression estimates will be unbiased?

Policy Evaluation - Regression

- Moral of the story:
 - Regression analysis is often used in place of randomization when randomization is infeasible.
 - The goal is to compare statistically identical people who differ only in their exposure to treatment.
 - Under certain conditions, regression can return causal estimates of our relationship of interest.
 - But omitted variable bias is a serious threat when exposure to treatment is non-random.
- So what do we do if randomization is infeasible and we're not confident that regression estimates will be unbiased?
 - ► Natural experiments and quasi-experimental research design.