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Estimating Treatment Effects Review

o Randomize treatment exposure so that (Y1, Y0) 1L D.

ATE.s: = ATE + {Avg,[Y?|D; = 1] — Avg,[Y?|D; = 0]}

Selection Bias = 0

+  (1—n)(ATT — ATU)

Heterogeneous Treatment Effect Bias = 0

o Added bonus when LLNs applies: Sample ATE = Population ATE
{Avg,[Y}|Di = 1] — Avga[Y?|D; = 0]} = {E[Y}| i = 1] — E[Y?| D; = 0]}
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Policy Evaluation - Randomization

@ So randomization is the ideal and the “gold standard” of research
methodologies.

@ But...in policy analysis it's often (though not always) impossible to
randomize individuals in our sample into treatment?

o How can we attempt to identify causal effects of policy when
randomization is infeasible?
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o Regression Analysis

» Assume that when key observed variables have been “made equal”
across treatment and control groups, omitted variable bias from
unobserved confounders will also be eliminated.

» Even if D is not randomly assigned, we can still hope that
(Y1, v9) 1L D.

> And that ATE.s: = ATE.
» BUT THIS NOT “GUARANTEED" LIKE IT IS WITH

RANDOMIZATION AND DEPENDS ON A STRONG
(UNTESTABLE) ASSUMPTION.
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@ So how does regression actually work?

o Note that we have not randomized people into X in this case. We
simply observe an individual's value of X in our sample.
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@ How does OLS use the regression residuals to fit a trend line to a
series of data points?
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@ Suppose that we estimate a linear regression model of the following
form: yir = Bo + B1Eduir + €j

Where y is the number of times that individual / visits the emergency
department in year t

Edu is individual i's education in years (e.g. a value of 12 represents a
high school education, a value of 14 represents a college education,
etc.).

Our coefficient estimates are as follows: Bo=4.0 and f1=-0.25.

How do we interpret these coefficient estimates?



Policy Evaluation - Regression

o But suppose the population distribution is...
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o By is an estimate of the true B1, the relationship between X (the
independent variable) and Y (the dependent variable)

@ How reliable is our estimate?
» Variance of the sampling distribution of the sample mean
- Variance of the distribution of B's from independent samples of the
population
- Equal to the variance of the population distribution divided by n
(number of samples)
- Square root of this variance is the standard error

o Inference

» Calculate a t-statistic and corresponding p-value

> Cl.p=p £t x SE(B)

» Suppose you estimate the regression model above and find that the
coefficient estimate of B1 has a p-value of 0.115 from a two-sided
t-test. What does that mean and what would you conclude about the
statistical significance of the relationship between education and
emergency department use?
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o Note that at this point, regression doesn't look all that different from
randomization.
> In both cases we're just comparing means of treated and control groups
from a sample.

@ Where these methods begin to diverge is when we add additional
covariates to our regression model to “control” for potental
confounders.
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Status of State Action on the Medicaid Expansion Decision
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Percentage of U.S. Adults Without Health Insurance, 2008-2018
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MARKETS 4 CHART OF THE DAY
UNEMPLOYMENT RATE

Percent of civilian labor force
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yit = Bo + B1Djr + BoEduir + B3Agejr + ...BiXit + €t

@ Our goal is to “control” for as many characteristics (X) as we can that
could be related to insurance coverage and morality (i.e.,
confounders).

o Estimate the effect of Medicaid coverage on mortality conditional on
education, age, etc.
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@ Remember, as long as we have eliminated all relevant confounders, our
regression estimate will be equal to the average treatment effect:

ATE. = ATE

o But then there's this...
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o What happens if we fail to account for an observed or unobserved
confounder?

@ Our estimate of the effect of Medicaid coverage on mortality will be

biased.

@ We think we're estimating the effect of Medicaid coverage on
mortality, but we're actually estimating the combined effect of
Medicaid coverage and risk aversion on mortality.

@ Sometimes we can determine which direction that bias is likely to
take.

» Suppose that those who are more risk averse are more likely to sign up

for Medicaid coverage when eligible and are more likely to be in better
health.

- Then our estimate of the effect of Medicaid coverage on mortality will
be biased away from zero.
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@ Moral of the story:
» Regression analysis is often used in place of randomization when
randomization is infeasible.
» The goal is to compare statistically identical people who differ only in
their exposure to treatment.
» Under certain conditions, regression can return causal estimates of our
relationship of interest.

» But omitted variable bias is a serious threat when exposure to
treatment is non-random.

@ So what do we do if randomization is infeasible and we're not
confident that regression estimates will be unbiased?

» Natural experiments and quasi-experimental research design.



