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o Natural experiment w/randomization (Oregon): (Y, Y%) 1L D
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o But we rarely encounter natural experiments w/ randomized
assignment to treatment, so what can we do?

@ Method 1: Difference-in-differences

> Intuition: Compare units exposed to treatment before and after
exposure to unexposed units.

» ATE = (Treatpost — Treatpre) — (Controlpost — Controlpre)
» ATE =
(E[Yleat|’DOSt] - E[Ygeatlpre]) - (E[Ycoont"DOSt] - E[Ycoont|’Dre])
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Quasi-Experimental Research Design - Difference-in-Differences

o Card & Kruegar (1994) - Does raising the minimum wage reduce
employment?

» Economic theory suggests that higher employment costs will reduce
demand for labor

» April 1, 1992: New Jersey raises minimum wage from $4.25 to $5.05
per hour

» Collected data on employment in 400 fast food restaurants in the
Philadelphia area in February 1992 (pre-NJ increase) and again in
November 1992 (post-increase).



Quasi-Experimental Research Design - Difference-in-Differences
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o ATE = (E[Y},|Nov] — E[Y,|Feb]) — (E[Y34|Nov] — E[YZ,|Feb])

» Where Y is the average number of FTE employees.

State Time Outcome Diff 1 Diff 2
New Jersey Pre 20.4
Post 21.0 0.6
2.8
Pennsylvania Pre 23.3
Post 21.1 -2.2
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o DD Estimating Equation:
Yst = Po + P1 Treats + B2 Post: + B3 Treats X Post; + et

o Why estimate a regression? Why not just compare means?

» We can, but a regression allows us to control for observable differences
in treatment and control units.

o What ATE are we estimating with DD?

» Depends. Could be ITT. Could be TOT. Are all units in the treatment
group exposed to treatment?

o Requirements for causal interpretation:
» Policy exogeneity
- Policy enactment is unrelated to outcome of interest
- Policy is “unanticipated”

» Parallel trends assumption



Quasi-Experimental Research Design - Difference-in-Differences

State Time Outcome Diff 1 Diff 2
New Jersey Pre Y =FTEns
Post Y=FTE\;+ T+ D T+D
D
Pennsylvania Pre Y = FTEpa
Post Y=FTEpa+T T

o Note that Diff 1 assumes that Tpy = Tpa
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Quasi-Experimental Research Design

@ Can we improve the likelihood that estimating the ATE with
non-random assignment returns causal estimates?

@ Method 2: Propensity Score Matching
> Intuition: control units that more closely resemble treatment units on
observables will also more closely resemble treatment units on
unobservables.
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@ PSM Steps:
1. Select covariates
- Match on characteristics related to treatment status.

2. Specify regression model for matching

- Predict probability of treatment.
- Assign a “propensity score” to each control unit.

w

. Select a matching method (several options).

N

. Create matches.

o1

. Compare balance.
- How similar are observables between the treatment and matched
controls?

6. Estimate the ATE.
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@ Matching Methods

1. Nearest neighbor matching

» Sequentially move through the sample of treated units matching each
unit with the closest control unit.
» “Closest” is determined by the propensity score.
- Starting point?
- Replacement?
- Caliper adjustment?

o Downsides:

» Lots of (ad hoc) decision making required.
» Discard unmatched control units.
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@ Matching Methods

2. Inverse probability weighting
» Instead of matching units from the treatment and control groups, IPW
re-weights the control group to more closely resemble the treatment

group.

» Use propensity scores as regression weights.

» Control units with a high probability of treatment get larger weights
and units with a low probability of treatment get smaller weights.

o Remember: regardless of matching technique, PSM assumes that
matching on observables removes confounding from unobservables.

@ We have no definitive way to test this assumption.
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o Balance Test: Shau et al. (2018) - Medicaid is Associated with
Increased Readmission and Resource Utilization after Primary Total
Knee Arthroplasty

Table 1

Characteristics of the TKA (ICD-9 code 8154) patients from the 2013 NRD.

Risk factors

Before propensity matching

After propensity matching

Medicaid, Other insurance, ~ PValue  Standardized Medicaid, Other insurance, P value® Standardized
N =8372 n = 268,261 difference n = 8372 n = 8372 difference”
Age, years (mean + SD) 56.7 + 9.4 66.7 +9.7 <.0001 1.055 56.7 +9.4 56.5 + 9.6 <.001 0.014
Female sex 6072 (72.5%) 165,227 (61.6%) <.0001 0.234 6071 (72.5%) 6129 (73.2%) .004 0.016
Severity of illness 549 (6.6%) 13,685 (5.1%) <.0001 0.062 547 (6.5%) 477 (5.7%) <.001 0.035
(major/extreme loss vs other)
Discharged to skilled facility 2118 (25.3%) 75,028 (28.0%) <.0001 0.061 2118 (25.3%) 2142 (25.6%) 261 0.007
Smoking 2711 (32.4%) 59,997 (22.4%) <.0001 0.226 2710 (32.4%) 2664 (31.8%) .038 0.012



