Policy Evaluation - Quasi-Experimental Research Designs

April 2, 2024

<ロ> <=> <=> <=> <=> <=> <=> のへで

Estimating Treatment Effects Review

•
$$ATE = Avg_n[Y_i^1 - Y_i^0]$$

• $ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$
• When $(Y^1, Y^0) \not\perp D$:
 $ATE_{est} = ATE + \underbrace{\{Avg_n[Y_i^0|D_i = 1] - Avg_n[Y_i^0|D_i = 0]\}}_{\text{Selection Bias}}$
 $+ \underbrace{(1 - \pi)(ATT - ATU)}_{\text{Heterogeneous Treatment Effect Bias}}$

- $ATE_{est} = \beta_0 + \beta_1 D + \beta_2 X_1 + \beta_3 X_2 + ... \beta_k X_{k-1} + \varepsilon$
- Natural experiment w/randomization (Oregon): $(Y^1, Y^0) \perp D$

イロト イポト イヨト イヨト ヨー わらで

Quasi-Experimental Research Design

• But we rarely encounter natural experiments w/ randomized assignment to treatment, so what can we do?

イロト イポト イヨト イヨト ヨー わらで

Quasi-Experimental Research Design

- But we rarely encounter natural experiments w/ randomized assignment to treatment, so what can we do?
- Method 1: Difference-in-differences
 - Intuition: Compare units exposed to treatment before and after exposure to unexposed units.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

- But we rarely encounter natural experiments w/ randomized assignment to treatment, so what can we do?
- Method 1: Difference-in-differences
 - Intuition: Compare units exposed to treatment before and after exposure to unexposed units.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

▶ ATE = (*Treat*_{post} - *Treat*_{pre}) - (*Control*_{post} - *Control*_{pre})

- But we rarely encounter natural experiments w/ randomized assignment to treatment, so what can we do?
- Method 1: Difference-in-differences
 - Intuition: Compare units exposed to treatment before and after exposure to unexposed units.
 - ► ATE = (*Treat*_{post} *Treat*_{pre}) (*Control*_{post} *Control*_{pre})
 - ► ATE = $(E[Y_{treat}^{1}|Post] - E[Y_{treat}^{0}|Pre]) - (E[Y_{cont}^{0}|Post] - E[Y_{cont}^{0}|Pre])$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

• Card & Kruegar (1994) - Does raising the minimum wage reduce employment?

- Card & Kruegar (1994) Does raising the minimum wage reduce employment?
 - Economic theory suggests that higher employment costs will reduce demand for labor

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● のへで

- Card & Kruegar (1994) Does raising the minimum wage reduce employment?
 - Economic theory suggests that higher employment costs will reduce demand for labor
 - ► April 1, 1992: New Jersey raises minimum wage from \$4.25 to \$5.05 per hour

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● のへで

- Card & Kruegar (1994) Does raising the minimum wage reduce employment?
 - Economic theory suggests that higher employment costs will reduce demand for labor
 - ► April 1, 1992: New Jersey raises minimum wage from \$4.25 to \$5.05 per hour
 - Collected data on employment in 400 fast food restaurants in the Philadelphia area in February 1992 (pre-NJ increase) and again in November 1992 (post-increase).

• Card & Kruegar (1994) - Minimum Wages and Employment

• ATE = $(E[Y_{NJ}^1|Nov] - E[Y_{NJ}^0|Feb]) - (E[Y_{PA}^0|Nov] - E[Y_{PA}^0|Feb])$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

Where Y is the average number of FTE employees.

• ATE =
$$(E[Y_{NJ}^{1}|Nov] - E[Y_{NJ}^{0}|Feb]) - (E[Y_{PA}^{0}|Nov] - E[Y_{PA}^{0}|Feb])$$

▶ Where *Y* is the average number of FTE employees.

State	Time	Outcome	Diff 1	Diff 2
New Jersey	Pre	$Y = FTE_{NJ}$		
	Post	$Y = FTE_{NJ} + T + D$		
Pennsylvania	Pre	$Y = FTE_{PA}$		
	Post	$Y = FTE_{PA} + T$		

• ATE =
$$(E[Y_{NJ}^{1}|Nov] - E[Y_{NJ}^{0}|Feb]) - (E[Y_{PA}^{0}|Nov] - E[Y_{PA}^{0}|Feb])$$

▶ Where *Y* is the average number of FTE employees.

State	Time	Outcome	Diff 1	Diff 2
New Jersey	Pre	$Y = FTE_{NJ}$		
	Post	$Y = FTE_{NJ} + T + D$	T+D	
Pennsylvania	Pre	$Y = FTE_{PA}$		
	Post	$Y = FTE_{PA} + T$	Т	

• ATE =
$$(E[Y_{NJ}^{1}|Nov] - E[Y_{NJ}^{0}|Feb]) - (E[Y_{PA}^{0}|Nov] - E[Y_{PA}^{0}|Feb])$$

▶ Where *Y* is the average number of FTE employees.

State	Time	Outcome	Diff 1	Diff 2
New Jersey	Pre	$Y = FTE_{NJ}$		
	Post	$Y = FTE_{NJ} + T + D$	T+D	
				D
Pennsylvania	Pre	$Y = FTE_{PA}$		
	Post	$Y = FTE_{PA} + T$	Т	

• ATE =
$$(E[Y_{NJ}^{1}|Nov] - E[Y_{NJ}^{0}|Feb]) - (E[Y_{PA}^{0}|Nov] - E[Y_{PA}^{0}|Feb])$$

▶ Where *Y* is the average number of FTE employees.

State	Time	Outcome	Diff 1	Diff 2
New Jersey	Pre	20.4		
	Post	21.0		
Pennsylvania	Pre	23.3		
	Post	21.1		

• ATE =
$$(E[Y_{NJ}^{1}|Nov] - E[Y_{NJ}^{0}|Feb]) - (E[Y_{PA}^{0}|Nov] - E[Y_{PA}^{0}|Feb])$$

▶ Where *Y* is the average number of FTE employees.

State	Time	Outcome	Diff 1	Diff 2
New Jersey	Pre	20.4		
	Post	21.0	0.6	
Pennsylvania	Pre	23.3		
	Post	21.1	-2.2	

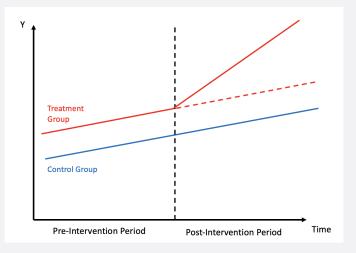
• ATE =
$$(E[Y_{NJ}^{1}|Nov] - E[Y_{NJ}^{0}|Feb]) - (E[Y_{PA}^{0}|Nov] - E[Y_{PA}^{0}|Feb])$$

▶ Where *Y* is the average number of FTE employees.

State	Time	Outcome	Diff 1	Diff 2
New Jersey	Pre	20.4		
	Post	21.0	0.6	
				2.8
Pennsylvania	Pre	23.3		
	Post	21.1	-2.2	

• DD Estimating Equation:

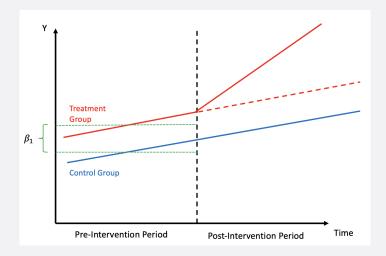
 $Y_{st} = \beta_0 + \beta_1 \textit{Treat}_s + \beta_2 \textit{Post}_t + \beta_3 \textit{Treat}_s \times \textit{Post}_t + \varepsilon_{st}$



▲ロト ▲圖 ト ▲画 ト ▲画 ト ● ④ ● ●

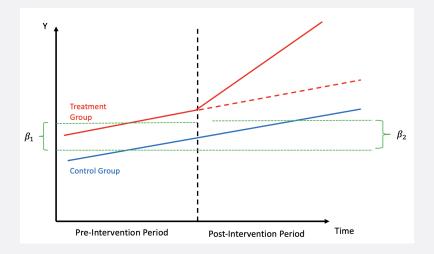
• DD Estimating Equation:

 $Y_{st} = \beta_0 + \beta_1 Treat_s + \beta_2 Post_t + \beta_3 Treat_s imes Post_t + \varepsilon_{st}$



• DD Estimating Equation:

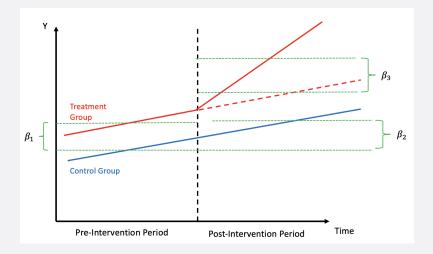
 $Y_{st} = \beta_0 + \beta_1 Treat_s + \beta_2 Post_t + \beta_3 Treat_s imes Post_t + \varepsilon_{st}$



▲ロト ▲圖 ト ▲画 ト ▲画 ト ● ④ ● ●

• DD Estimating Equation:

 $Y_{st} = \beta_0 + \beta_1 Treat_s + \beta_2 Post_t + \beta_3 Treat_s imes Post_t + \varepsilon_{st}$



▲ロト ▲圖 ト ▲画 ト ▲画 ト ● ④ ● ●

• DD Estimating Equation:

 $Y_{st} = \beta_0 + \beta_1 \mathit{Treat}_s + \beta_2 \mathit{Post}_t + \beta_3 \mathit{Treat}_s imes \mathit{Post}_t + \varepsilon_{st}$

イロト イポト イヨト イヨト ヨー わらで

• DD Estimating Equation:

 $Y_{st} = \beta_0 + \beta_1 \mathit{Treat}_s + \beta_2 \mathit{Post}_t + \beta_3 \mathit{Treat}_s imes \mathit{Post}_t + \varepsilon_{st}$

• Why estimate a regression? Why not just compare means?

• DD Estimating Equation:

 $Y_{st} = \beta_0 + \beta_1 \mathit{Treat}_s + \beta_2 \mathit{Post}_t + \beta_3 \mathit{Treat}_s imes \mathit{Post}_t + \varepsilon_{st}$

- Why estimate a regression? Why not just compare means?
 - We can, but a regression allows us to control for observable differences in treatment and control units.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

• DD Estimating Equation:

 $Y_{st} = \beta_0 + \beta_1 \mathit{Treat}_s + \beta_2 \mathit{Post}_t + \beta_3 \mathit{Treat}_s imes \mathit{Post}_t + \varepsilon_{st}$

- Why estimate a regression? Why not just compare means?
 - We can, but a regression allows us to control for observable differences in treatment and control units.

・ロト ・ 同ト ・ ヨト ・ ヨー・ つくの

• What ATE are we estimating with DD?

• DD Estimating Equation:

 $Y_{st} = \beta_0 + \beta_1 Treat_s + \beta_2 Post_t + \beta_3 Treat_s imes Post_t + \varepsilon_{st}$

- Why estimate a regression? Why not just compare means?
 - We can, but a regression allows us to control for observable differences in treatment and control units.
- What ATE are we estimating with DD?
 - Depends. Could be ITT. Could be TOT. Are all units in the treatment group exposed to treatment?

・ロト ・ 同ト ・ ヨト ・ ヨー・ つくの

• DD Estimating Equation:

 $Y_{st} = \beta_0 + \beta_1 \mathit{Treat}_s + \beta_2 \mathit{Post}_t + \beta_3 \mathit{Treat}_s imes \mathit{Post}_t + \varepsilon_{st}$

- Why estimate a regression? Why not just compare means?
 - We can, but a regression allows us to control for observable differences in treatment and control units.
- What ATE are we estimating with DD?
 - Depends. Could be ITT. Could be TOT. Are all units in the treatment group exposed to treatment?

・ロト ・ 同ト ・ ヨト ・ ヨー・ つくの

• Requirements for causal interpretation:

• DD Estimating Equation:

 $Y_{st} = \beta_0 + \beta_1 \textit{Treat}_s + \beta_2 \textit{Post}_t + \beta_3 \textit{Treat}_s \times \textit{Post}_t + \varepsilon_{st}$

- Why estimate a regression? Why not just compare means?
 - We can, but a regression allows us to control for observable differences in treatment and control units.
- What ATE are we estimating with DD?
 - Depends. Could be ITT. Could be TOT. Are all units in the treatment group exposed to treatment?

- Requirements for causal interpretation:
 - Policy exogeneity
 - Policy enactment is unrelated to outcome of interest
 - Policy is "unanticipated"

• DD Estimating Equation:

 $Y_{st} = \beta_0 + \beta_1 \mathit{Treat}_s + \beta_2 \mathit{Post}_t + \beta_3 \mathit{Treat}_s imes \mathit{Post}_t + \varepsilon_{st}$

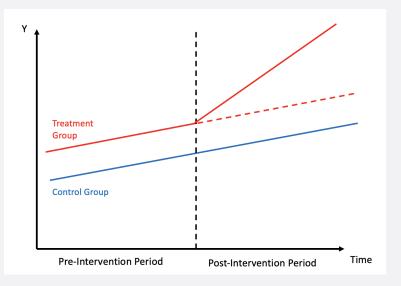
- Why estimate a regression? Why not just compare means?
 - We can, but a regression allows us to control for observable differences in treatment and control units.
- What ATE are we estimating with DD?
 - Depends. Could be ITT. Could be TOT. Are all units in the treatment group exposed to treatment?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

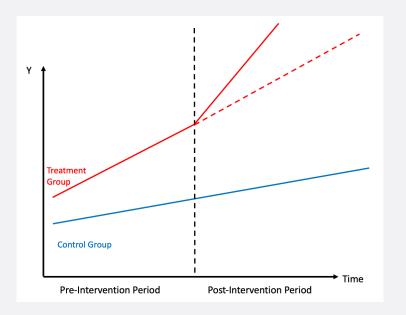
- Requirements for causal interpretation:
 - Policy exogeneity
 - Policy enactment is unrelated to outcome of interest
 - Policy is "unanticipated"
 - Parallel trends assumption

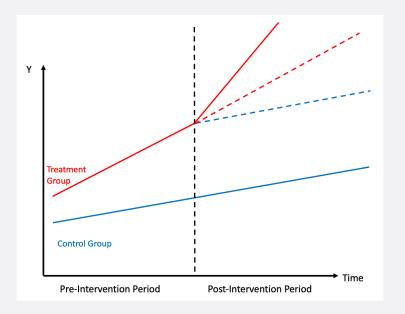
State	Time	Outcome	Diff 1	Diff 2
New Jersey	Pre	$Y = FTE_{NJ}$		
	Post	$Y = FTE_{NJ} + T + D$	T+D	
				D
Pennsylvania	Pre	$Y = FTE_{PA}$		
	Post	$Y = FTE_{PA} + T$	Т	

• Note that Diff 1 assumes that $T_{NJ} = T_{PA}$

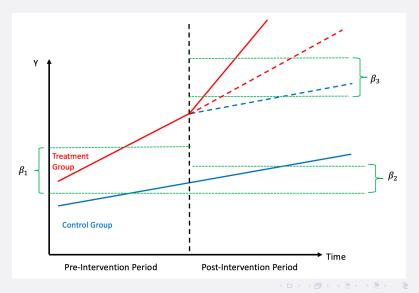


◆□ > ◆□ > ◆臣 > ◆臣 > ● 臣 = のへ(?)



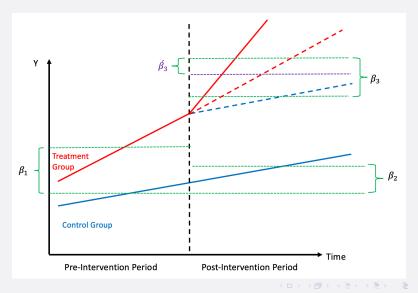


- DD Estimating Equation:
 - $Y_{st} = \beta_0 + \beta_1 Treat_s + \beta_2 Post_t + \beta_3 Treat_s imes Post_t + \varepsilon_{st}$



• DD Estimating Equation:

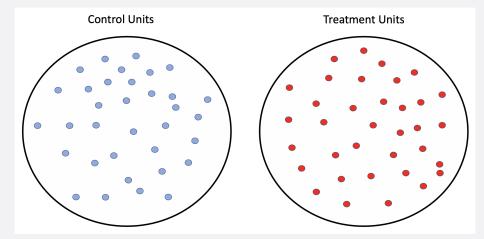
 $Y_{st} = \beta_0 + \beta_1 Treat_s + \beta_2 Post_t + \beta_3 Treat_s imes Post_t + \varepsilon_{st}$



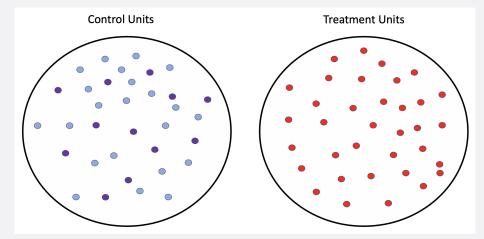
• Can we improve the likelihood that estimating the ATE with non-random assignment returns causal estimates?

- Can we improve the likelihood that estimating the ATE with non-random assignment returns causal estimates?
- Method 2: Propensity Score Matching
 - Intuition: control units that more closely resemble treatment units on observables will also more closely resemble treatment units on unobservables.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()



◆ロ▶ ◆舂▶ ◆恵▶ ◆恵▶ 「恵」 のへで



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

• PSM Steps:

- PSM Steps:
 - 1. Select covariates
 - Match on characteristics related to treatment status.

イロト イポト イヨト イヨト ヨー わらで

- PSM Steps:
 - 1. Select covariates
 - Match on characteristics related to treatment status.

- 2. Specify regression model for matching
 - Predict probability of treatment.
 - Assign a "propensity score" to each control unit.

- PSM Steps:
 - 1. Select covariates
 - Match on characteristics related to treatment status.

- 2. Specify regression model for matching
 - Predict probability of treatment.
 - Assign a "propensity score" to each control unit.
- 3. Select a matching method (several options).

- PSM Steps:
 - 1. Select covariates
 - Match on characteristics related to treatment status.

- 2. Specify regression model for matching
 - Predict probability of treatment.
 - Assign a "propensity score" to each control unit.
- 3. Select a matching method (several options).
- 4. Create matches.

- PSM Steps:
 - 1. Select covariates
 - Match on characteristics related to treatment status.
 - 2. Specify regression model for matching
 - Predict probability of treatment.
 - Assign a "propensity score" to each control unit.
 - 3. Select a matching method (several options).
 - 4. Create matches.
 - 5. Compare balance.
 - How similar are observables between the treatment and matched controls?

- PSM Steps:
 - 1. Select covariates
 - Match on characteristics related to treatment status.
 - 2. Specify regression model for matching
 - Predict probability of treatment.
 - Assign a "propensity score" to each control unit.
 - 3. Select a matching method (several options).
 - 4. Create matches.
 - 5. Compare balance.
 - How similar are observables between the treatment and matched controls?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

6. Estimate the ATE.

- Matching Methods
- 1. Nearest neighbor matching

Matching Methods

- 1. Nearest neighbor matching
 - Sequentially move through the sample of treated units matching each unit with the closest control unit.

Matching Methods

- 1. Nearest neighbor matching
 - Sequentially move through the sample of treated units matching each unit with the closest control unit.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● のへで

"Closest" is determined by the propensity score.

Matching Methods

- 1. Nearest neighbor matching
 - Sequentially move through the sample of treated units matching each unit with the closest control unit.

- "Closest" is determined by the propensity score.
 - Starting point?
 - Replacement?
 - Caliper adjustment?

Matching Methods

- 1. Nearest neighbor matching
 - Sequentially move through the sample of treated units matching each unit with the closest control unit.

- "Closest" is determined by the propensity score.
 - Starting point?
 - Replacement?
 - Caliper adjustment?
- Downsides:
 - Lots of (ad hoc) decision making required.
 - Discard unmatched control units.

- Matching Methods
- 2. Inverse probability weighting

- Matching Methods
- 2. Inverse probability weighting
 - Instead of matching units from the treatment and control groups, IPW re-weights the control group to more closely resemble the treatment group.

- Matching Methods
- 2. Inverse probability weighting
 - Instead of matching units from the treatment and control groups, IPW re-weights the control group to more closely resemble the treatment group.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● のへで

Use propensity scores as regression weights.

Matching Methods

- 2. Inverse probability weighting
 - Instead of matching units from the treatment and control groups, IPW re-weights the control group to more closely resemble the treatment group.
 - Use propensity scores as regression weights.
 - Control units with a high probability of treatment get larger weights and units with a low probability of treatment get smaller weights.

・ロト ・ 同ト ・ ヨト ・ ヨー・ つくの

Matching Methods

- 2. Inverse probability weighting
 - Instead of matching units from the treatment and control groups, IPW re-weights the control group to more closely resemble the treatment group.
 - Use propensity scores as regression weights.
 - Control units with a high probability of treatment get larger weights and units with a low probability of treatment get smaller weights.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ ク へ ()

• Remember: regardless of matching technique, PSM assumes that matching on observables removes confounding from unobservables.

Matching Methods

- 2. Inverse probability weighting
 - Instead of matching units from the treatment and control groups, IPW re-weights the control group to more closely resemble the treatment group.
 - Use propensity scores as regression weights.
 - Control units with a high probability of treatment get larger weights and units with a low probability of treatment get smaller weights.
 - Remember: regardless of matching technique, PSM assumes that matching on observables removes confounding from unobservables.
 - We have no definitive way to test this assumption.

• Balance Test: Shau et al. (2018) - Medicaid is Associated with Increased Readmission and Resource Utilization after Primary Total Knee Arthroplasty

Table 1

Characteristics of the TKA (ICD-9 code 8154) patients from the 2013 NRD.

Risk factors	Before propensity matching				After propensity matching			
	Medicaid, N = 8372	Other insurance, $n = 268,261$	P Value	Standardized difference	Medicaid, n = 8372	Other insurance, $n = 8372$	P value ^a	Standardized difference ^b
Age, years (mean ± SD)	56.7 ± 9.4	66.7 ± 9.7	<.0001	1.055	56.7 ± 9.4	56.5 ± 9.6	<.001	0.014
Female sex	6072 (72.5%)	165,227 (61.6%)	<.0001	0.234	6071 (72.5%)	6129 (73.2%)	.004	0.016
Severity of illness (major/extreme loss vs other)	549 (6.6%)	13,685 (5.1%)	<.0001	0.062	547 (6.5%)	477 (5.7%)	<.001	0.035
Discharged to skilled facility Smoking	2118 (25.3%) 2711 (32.4%)	75,028 (28.0%) 59,997 (22.4%)	<.0001 <.0001	0.061 0.226	2118 (25.3%) 2710 (32.4%)	2142 (25.6%) 2664 (31.8%)	.261 .038	0.007 0.012