March 12, 2024

- What criteria should we use to assess existing evidence?
 - Strength of the methodology
 - Does the evidence provide a causal interpretation?
 - Is the evidence rooted in the appropriate historical context?

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● のへで

- Quality of the data
- External validity

Policy Evaluation - Assessing Evidence

• Describe the differences between a sample study, and observational study, and an experiment.

イロト イポト イヨト イヨト ヨー わらで

Policy Evaluation Outline

• Steps for conducting a quantitative policy evaluation.

- 1. Develop a research question (hypothesis).
 - 1a. Assess the existing evidence.
 - 1b. What is your contribution?
- 2. Develop a research strategy.
 - 2a. Empirical methodology.
 - 2b. Cost effectiveness/benefit/utility analysis.
- 3. Identify appropriate data.
 - 3a. Primary vs. secondary data.
 - 3b. Cross-sectional vs. panel (longitudinal) data.
 - 3c. Power analysis?
- 4. Engage funders/stakeholders.
- Construct an analytic sample (i.e., data management).
 5a. STATA, SAS, R, SQL, Excel, etc.

- 6. Conduct data analysis.
- 7. Report findings.

• Goal: Calculate the **average treatment effect** of a policy or intervention on a specified outcome.

- Goal: Calculate the **average treatment effect** of a policy or intervention on a specified outcome.
- Average Treatment Effect (ATE) of an intervention among a sample of *n* people:

$$ATE = Avg_n[Y_i^1 - Y_i^0]$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

Where Y_i^1 is the *potential* outcome for person *i* with treatment and Y_i^0 is the *potential* outcome for person *i* without treatment.

Estimating Treatment Effects

• Suppose we're interested in the effect of a new surgical intervention $(D_i = 1)$ for cancer on longevity compared to standard chemotherapy $(D_i = 0)$.

Patient		Y ⁰
1	7	1
2	5	6
3	5	1
4	7	8
5	4	2
6	10	1
7	1	10
8	5	6
9	3	7
10	9	8

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

Outcomes for ten patients receiving surgery (Y¹) or chemotherapy (Y⁰)

• Calculate the ATE $(ATE = Avg_n[Y_i^1 - Y_i^0])$.

- Goal: Calculate the **average treatment effect** of a policy or intervention on a specified outcome.
- Average Treatment Effect (ATE) of an intervention among a sample of *n* people:

$$ATE = Avg_n[Y_i^1 - Y_i^0]$$

Where Y_i^1 is the *potential* outcome for person *i* with treatment and Y_i^0 is the *potential* outcome for person *i* without treatment.

• Problem:

- Goal: Calculate the **average treatment effect** of a policy or intervention on a specified outcome.
- Average Treatment Effect (ATE) of an intervention among a sample of *n* people:

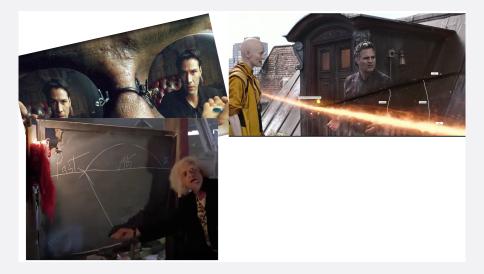
$$ATE = Avg_n[Y_i^1 - Y_i^0]$$

Where Y_i^1 is the *potential* outcome for person *i* with treatment and Y_i^0 is the *potential* outcome for person *i* without treatment.

・ロト ・ 同ト ・ ヨト ・ ヨー・ つくの

• Problem: We can never obtain the ATE this way because we don't observe the *counterfactual*.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ●



• Solution?

• Solution? Let's *estimate* the ATE by comparing outcomes for those who are treated and those who aren't treated.

イロト イポト イヨト イヨト ヨー わらで

- Solution? Let's *estimate* the ATE by comparing outcomes for those who are treated and those who aren't treated.
- Define treatment status D_i as:

$$D_i = egin{cases} 1 & ext{if treated} \ 0 & ext{otherwise} \end{cases}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

- Solution? Let's *estimate* the ATE by comparing outcomes for those who are treated and those who aren't treated.
- Define treatment status D_i as:

$$D_i = \begin{cases} 1 & \text{if treated} \\ 0 & \text{otherwise} \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

• Average outcome (Y) conditional on treatment:

- Solution? Let's *estimate* the ATE by comparing outcomes for those who are treated and those who aren't treated.
- Define treatment status D_i as:

$$D_i = \begin{cases} 1 & \text{if treated} \\ 0 & \text{otherwise} \end{cases}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

• Average outcome (Y) conditional on treatment: $Avg_n[Y_i^1|D_i=1]$

- Solution? Let's *estimate* the ATE by comparing outcomes for those who are treated and those who aren't treated.
- Define treatment status D_i as:

$$D_i = egin{cases} 1 & ext{if treated} \ 0 & ext{otherwise} \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

• Average outcome (Y) conditional on treatment:

$$Avg_n[Y_i^1|D_i = 1]$$
$$Avg_n[Y_i^0|D_i = 0]$$

- Solution? Let's *estimate* the ATE by comparing outcomes for those who are treated and those who aren't treated.
- Define treatment status D_i as:

$$D_i = egin{cases} 1 & ext{if treated} \ 0 & ext{otherwise} \end{cases}$$

・ロト ・ 同ト ・ ヨト ・ ヨー・ つくの

• Average outcome (Y) conditional on treatment:

$$Avg_n[Y_i^1|D_i = 1]$$

 $Avg_n[Y_i^0|D_i = 0]$

• Estimated Effect of treatment on Y: $ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$

Estimating Treatment Effects

• Suppose we're interested in the effect of a new surgical intervention $(D_i = 1)$ for cancer on longevity compared to standard chemotherapy $(D_i = 0)$.

Outcomes for ten patients receiving surgery (Y ¹) or chemotherapy (Y ⁰)					
Patient	Y ¹	Y ⁰	D	Y	
1	7	1	1	7	
2	5	6	0	6	
3	5	1	1	5	
4	7	8	0	8	
5	4	2	1	4	
6	10	1	1	10	
7	1	10	0	10	
8	5	6	0	6	
9	3	7	0	7	
10	9	8	1	9	

• ATE = ?

• $ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0] = ?$

•
$$ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$$

• When does $ATE_{est} = ATE$ and when does it not?

•
$$ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$$

- When does $ATE_{est} = ATE$ and when does it not?
 - Depends on whether treatment assignment is independent of potential outcomes.

•
$$ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$$

- When does $ATE_{est} = ATE$ and when does it not?
 - Depends on whether treatment assignment is independent of potential outcomes.

- $(Y^1, Y^0) \perp D$

•
$$ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$$

- When does $ATE_{est} = ATE$ and when does it not?
 - Depends on whether treatment assignment is independent of potential outcomes.

-
$$(Y^1, Y^0) \perp D$$

• If independence is violated, then treatment effects differ by treatment status:

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● のへで

•
$$ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$$

- When does $ATE_{est} = ATE$ and when does it not?
 - Depends on whether treatment assignment is independent of potential outcomes.

-
$$(Y^1, Y^0) \perp D$$

- If independence is violated, then treatment effects differ by treatment status:
 - Average Treatment Effect for the Treated:

$$ATT = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 1]$$

•
$$ATE_{est} = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$$

- When does $ATE_{est} = ATE$ and when does it not?
 - Depends on whether treatment assignment is independent of potential outcomes.

-
$$(Y^1, Y^0) \perp D$$

- If independence is violated, then treatment effects differ by treatment status:
 - Average Treatment Effect for the Treated:

$$ATT = Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 1]$$

Average Treatment Effect for the Untreated:

$$ATU = Avg_n[Y_i^1|D_i = 0] - Avg_n[Y_i^0|D_i = 0]$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

Estimating Treatment Effects

• Suppose we're interested in the effect of a new surgical intervention $(D_i = 1)$ for cancer on longevity compared to standard chemotherapy $(D_i = 0)$.

Outcomes for ten patients receiving surgery (Y ¹) or chemotherapy (Y ⁰)				
Patient	Y ¹	Y ⁰	D	Y
1	7	1	1	7
2	5	6	0	6
3	5	1	1	5
4	7	8	0	8
5	4	2	1	4
6	10	1	1	10
7	1	10	0	10
8	5	6	0	6
9	3	7	0	7
10	9	8	1	9

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

• ATE = ?

- $ATE_{est} = Avg_n[Y_i^1|D_i = 1] Avg_n[Y_i^0|D_i = 0] = ?$
- $ATT = Avg_n[Y_i^1 | D_i = 1] Avg_n[Y_i^0 | D_i = 1] = ?$
- $ATU = Avg_n[Y_i^1|D_i = 0] Avg_n[Y_i^0|D_i = 0] = ?$

• With no independence:

$$ATE = \pi ATT + (1 - \pi)ATU$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

where π is the share of the sample receiving treatment.

Estimating Treatment Effects

• Suppose we're interested in the effect of a new surgical intervention $(D_i = 1)$ for cancer on longevity compared to standard chemotherapy $(D_i = 0)$.

Outcomes for t	en patients receiv	ing surgery (Y ¹) or	chemotherapy (Y)
Patient	Y ¹	Y ⁰	D	Y
1	7	1	1	7
2	5	6	0	6
3	5	1	1	5
4	7	8	0	8
5	4	2	1	4
6	10	1	1	10
7	1	10	0	10
8	5	6	0	6
9	3	7	0	7
10	9	8	1	9

- *ATE* = ?
- $ATE_{est} = ?$
- *ATT* = ?
- ATU = ?
- $ATE = ATT(\pi) + ATU(1 \pi) = ?$

• With no independence:

$$ATE = \pi ATT + (1 - \pi)ATU$$

<ロ> <=> <=> <=> <=> <=> <=> のへで

• With no independence:

$$ATE = \pi ATT + (1 - \pi)ATU$$

• Do some algebra:

$$\begin{aligned} \mathsf{ATE}_{est} = \mathsf{ATE} + \{\mathsf{Avg}_n[Y_i^0|D_i = 1] - \mathsf{Avg}_n[Y_i^0|D_i = 0]\} \\ + (1 - \pi)(\mathsf{ATT} - \mathsf{ATU}) \end{aligned}$$

• With no independence:

$$ATE = \pi ATT + (1 - \pi)ATU$$

• Do some algebra:

$$ATE_{est} = ATE + \underbrace{\{Avg_n[Y_i^0|D_i = 1] - Avg_n[Y_i^0|D_i = 0]\}}_{\text{Selection Bias}} + \underbrace{(1 - \pi)(ATT - ATU)}_{\text{Selection Bias}}$$

Heterogeneous Treatment Effect Bias

• Some notes on selection bias:

- Some notes on selection bias:
 - Sometimes called *omitted variable bias*.

- Some notes on selection bias:
 - Sometimes called *omitted variable bias*.
 - Problem because selection into treatment depends on factors that are correlated with potential outcomes.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

- Some notes on selection bias:
 - Sometimes called *omitted variable bias*.
 - Problem because selection into treatment depends on factors that are correlated with potential outcomes.

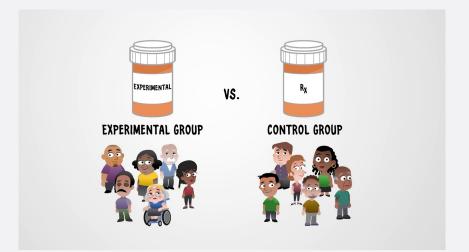
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

► To the extent that we can observe and control for these correlates, then our estimates are free from bias (e.g., economy).

- Some notes on selection bias:
 - Sometimes called *omitted variable bias*.
 - Problem because selection into treatment depends on factors that are correlated with potential outcomes.
 - ► To the extent that we can observe and control for these correlates, then our estimates are free from bias (e.g., economy).
 - If these correlates are unobserved, then our estimates will be biased (e.g., risk aversion).

• So how do we mitigate selection bias?

• So how do we mitigate selection bias?



・ロト ・四ト ・ヨト ・ヨト ・日・ うへの

• Why does randomization mitigate omitted variable bias?

- Why does randomization mitigate omitted variable bias?
- If D is randomly assigned, then $(Y^1, Y^0) \perp D$:
 - ▶ 1. $Avg_n[Y_i^0|D_i = 1] = Avg_n[Y_i^0|D_i = 0]$
 - ▶ 2. ATT = ATU

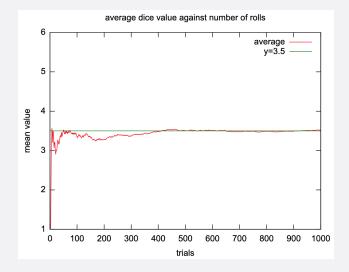
$$ATE_{est} = ATE + \underbrace{\{Avg_n[Y_i^0|D_i = 1] - Avg_n[Y_i^0|D_i = 0]\}}_{\text{Selection Bias} = 0} + \underbrace{(1 - \pi)(ATT - ATU)}_{\text{Heterogeneous Treatment Effect Bias} = 0}$$

- Why does randomization mitigate omitted variable bias?
- If D is randomly assigned, then $(Y^1, Y^0) \perp D$:
 - ▶ 1. $Avg_n[Y_i^0|D_i = 1] = Avg_n[Y_i^0|D_i = 0]$
 - ▶ 2. ATT = ATU

$$ATE_{est} = ATE + \underbrace{\{Avg_n[Y_i^0|D_i = 1] - Avg_n[Y_i^0|D_i = 0]\}}_{\text{Selection Bias} = 0} + \underbrace{(1 - \pi)(ATT - ATU)}_{\text{Heterogeneous Treatment Effect Bias} = 0}$$

• IMPORTANT: This only works when the sample is "sufficiently large".

• Law of Large Numbers:



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Randomization and the LLN are even more powerful than they seem.

• Randomization and the LLN are even more powerful than they seem.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

• Sample Average Treatment Effect = $Avg_n[Y_i^1|D_i = 1] - Avg_n[Y_i^0|D_i = 0]$

- Randomization and the LLN are even more powerful than they seem.
- Sample Average Treatment Effect = $Avg_n[Y_i^1|D_i = 1] Avg_n[Y_i^0|D_i = 0]$
- If *n* is "sufficiently large", then we can replace conditional *averages* with conditional *expectations*.

- Randomization and the LLN are even more powerful than they seem.
- Sample Average Treatment Effect = $Avg_n[Y_i^1|D_i = 1] Avg_n[Y_i^0|D_i = 0]$
- If *n* is "sufficiently large", then we can replace conditional *averages* with conditional *expectations*.
- Population Average Causal Effect = $E[Y_i^1|D_i = 1] E[Y_i^0|D_i = 0]$

・ロト ・ 同ト ・ ヨト ・ ヨー・ つくの

- Randomization and the LLN are even more powerful than they seem.
- Sample Average Treatment Effect = $Avg_n[Y_i^1|D_i = 1] Avg_n[Y_i^0|D_i = 0]$
- If *n* is "sufficiently large", then we can replace conditional *averages* with conditional *expectations*.
- Population Average Causal Effect = $E[Y_i^1|D_i = 1] E[Y_i^0|D_i = 0]$
- Note that "sufficiently large" depends on the population mean and standard deviation of the outcome of interest.

• So randomization is the ideal and the "gold standard" of research methodologies.

- So randomization is the ideal and the "gold standard" of research methodologies.
- But...in policy analysis it's often (though not always) impossible to randomize individuals in our sample into treatment?

- So randomization is the ideal and the "gold standard" of research methodologies.
- But...in policy analysis it's often (though not always) impossible to randomize individuals in our sample into treatment?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ク へ ()

• How can we attempt to identify causal effects of policy when randomization is infeasible?